Subcellular localization of TatAd of Bacillus subtilis depends on the presence of TatCd or TatCy.
نویسندگان
چکیده
The gram-positive bacterium Bacillus subtilis contains two minimal Tat translocases, TatAdCd and TatAyCy, which are each involved in the secretion of one or more specific protein substrates. We have investigated the subcellular localization of the TatA components by employing C-terminal green fluorescent protein (GFP) fusions and fluorescence microscopy. When expressed from a xylose-inducible promoter, the TatA-GFP fusion proteins displayed a dual localization pattern, being localized peripherally and showing bright foci which are predominantly located at the division sites and/or poles of the cells. Importantly, the localization of TatAd-GFP was similar when the protein was expressed from its own promoter under phosphate starvation conditions, indicating that these foci are not the result of artificial overexpression. Moreover, the TatAd-GFP fusion protein was shown to be functional in the translocation of its substrate PhoD, provided that TatCd is also present. Furthermore, we demonstrate that the localization of TatAd-GFP in foci depends on the presence of the TatCd component. Remarkably, however, the TatAd-GFP foci can also be observed in the presence of TatCy, indicating that TatAd can interact not only with TatCd but also with TatCy. These results suggest that the formation of TatAd complexes in B. subtilis is controlled by TatC.
منابع مشابه
TatAc, the third TatA subunit of Bacillus subtilis, can form active twin-arginine translocases with the TatCd and TatCy subunits.
Two independent twin-arginine translocases (Tat) for protein secretion were previously identified in the Gram-positive bacterium Bacillus subtilis. These consist of the TatAd-TatCd and TatAy-TatCy subunits. The function of a third TatA subunit named TatAc was unknown. Here, we show that TatAc can form active protein translocases with TatCd and TatCy.
متن کاملThe third TatA subunit TatAc of Bacillus subtilis can form active twin - 1 arginine translocases with the TatCd and TatCy subunits 2 3 Carmine
23 Two independent twin-arginine translocases (Tat) for protein secretion were previously 24 identified in the Gram-positive bacterium Bacillus subtilis. These consist of the TatAd-TatCd 25 and TatAy-TatCy subunits. The function of a third TatA subunit named TatAc was unknown. 26 Here we show that TatAc can form active protein translocases with TatCd and TatCy. 27 28 29 Protein transport from t...
متن کاملAffinity of TatCd for TatAd elucidates its receptor function in the Bacillus subtilis twin arginine translocation (Tat) translocase system.
Twin arginine translocation (Tat) systems catalyze the transport of folded proteins across the bacterial cytosolic membrane or the chloroplast thylakoid membrane. In the Tat systems of Escherichia coli and many other species TatA-, TatB-, and TatC-like proteins have been identified as essential translocase components. In contrast, the Bacillus subtilis phosphodiesterase PhoD-specific system con...
متن کاملEnvironmental Salinity Determines the Specificity and Need for Tat-Dependent Secretion of the YwbN Protein in Bacillus subtilis
Twin-arginine protein translocation (Tat) pathways are required for transport of folded proteins across bacterial, archaeal and chloroplast membranes. Recent studies indicate that Tat has evolved into a mainstream pathway for protein secretion in certain halophilic archaea, which thrive in highly saline environments. Here, we investigated the effects of environmental salinity on Tat-dependent p...
متن کاملRelaxed specificity of the Bacillus subtilis TatAdCd translocase in Tat-dependent protein secretion.
Protein translocation via the twin arginine translocation (TAT) pathway is characterized by the translocation of prefolded proteins across the hydrophobic lipid bilayer of the membrane. In Bacillus subtilis, two different Tat translocases are involved in this process, and both display different substrate specificities: PhoD is secreted via TatAdCd, whereas YwbN is secreted via TatAyCy. It was p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 191 13 شماره
صفحات -
تاریخ انتشار 2009